0 Compare
Add products to the comparison using the scales icon and here you can then compare their parameters.
User
0 Basket
Your basket is empty...

Chromatography

HPLC connections (TN #539)

This technical note shows possible types of connection between column and LC system. Bad connection may influence peak separation and should be avoided. The right connection is presented below.

How the Triple Quadrupole works?

EVOQ Triple QuadrupoleThe principle of Triple Quadrupole (TQ) is explained on EVOQ™ system by Bruker. The key points of the system are:

  • Axial Ion Source
  • Active Focusing Q1
  • Lens-Free Ion Path
  • 180° Collision Cell
  • Elliptical Design
  • Off Axis Detector

puriFlash

puriFlash® Flash Cartridges

Interchim developed new technique for flash chromatography - Ultra Performance Flash Purification (UPFP) using special flash cartridges. The flash cartridges are in the form of regular or irregular silica. UPFP enables to run purifications with high purity of the yield and less solvent use.

Preparative LC

External flow cellTask for preparative HPLC systems differs to analytical one. While analytical HPLC task is qualitative and quantitative determination of defined compounds in samples, preparative HPLC task is separation, purification and isolation of value products from mixtures.

Preparative chromatography can be devidet into three main areas:

  • Semi-preparative separations
  • Batch preparative chromatography (pilot or industrial scale)
  • True Counter-current chromatography
  • Simulated moving bed (SMB)
  • Continuous chromatography

Scale definition

Parameter Analytical Semi-preparative Preparative
Column sizes (mm) 120 - 250 x 2 - 4.6 120 - 250 x 8 - 16 120 - 250 x 20 - 62
Particle size (µm) up to 5 5 - 10 higher than 10
Stationary phase (g) up to 5 5 - 30 50 - 450
Tubings 1/16" 1/16" 1/8"
Flow rates (ml/min) 0.1 - 2 5 - 50 100 - 1000
Sample size (mg) 0.01 - 2 0.1 - 50 1 - 700
Flow cell (mm) 10 3 0.5 - 2

Preparative chromatography can be conbined with Flash chromatography in one system - purification device. The PuriFlash (Advion-Interchim) offers different modes of operation:

  • Preparative line + Flash line
  • Two Flash lines
  • Two Preparative lines.

Introduction

Amino acids are key building blocks of life and play pivotal role in various metabolic pathways. They mostly act as intermediates often not directly involving proteins. Due to their chemical complexity and dynamic range, their reliable quantitative and qualitative analysis in biological fluids and tissues is crucial for nutritional information, compound identification and diagnostics.

For that purpose, a simple, elegant and thus far the most expeditious method for an invaluable amino acid analysis has been developed. LC/GC-MS based Metamino® kit offers comprehensive solution up to 75 metabolites including basic proteinogenic amino acids, biogenic amines and coenzymes with the possibility to a further analyte extension.

Features

  • In principle suitable for any matrices (urine, blood serum, tear, cerebral liquid, tissue extracts, soil extracts, etc.)
  • Easy sample preparation
  • Sample derivatization and analysis under 20 minutes
  • Broad portfolio of analytes (75) with the possibility for a further extension
  • No sample heating/ freezing needed
  • NIST Library for GC/MS available
  • Possible to determine substances with a low molecular weight that can be degraded in the ion source (e.g., GLY, ALA, etc.)
  • Suitable for the analysis of substances that are difficult to quantify, such as polyamines
  • All necessary reagents, accessories, HPLC column and clear instructions for derivatization and analysis with high accuracy and sensitivity are included

Allowable Adjustments to HPLC Methods

Chromservis HPLC columns corresponding to USP and Eur. Pharmacopoeia methods and the extent to which the various parameters of a chromatographic test may be adjusted without fundamentally modifying the pharmacopoeial analytical procedures are listed in this technical note. Changes other than those indicated require revalidation of the procedure.

Sample loading in Flash chromatography

Liquid or solid, with small or large sample volumes: because your challenges are just as varied as your injections, we offer multiple possibilities for optimisation, to guarantee you the best results day after day.

Dry Load & Accessories

So far only available in a disposable plastic version, the Dry Loads are now also available in a stainless steel version. These are reusable and also have the advantage of greater resistance to pressure.
With the stainless steel Dry Loads, you can carry out solid injections on a preparative column and in flash column applications where the maximum pressure resistance of a plastic Dry Load would be insufficient.

Injection loops

Thanks to our range covering volumes from 100 μl to 50 mL, there is always an injection loop suited to your needs.

AutosmaplerAutosampler

Automate your injections with our autosampler and increase your performance tenfold. The puriFlash® AS-1 allows the injection of samples from 500 µl to 500 mL, with an automated cleaning of the transfer tubes between each injection. The injection is managed by a sample queue on InterSoft software. The autosampler xan be equiped with 6-way or 10-way electric valve.

One rack/slot offers capacities fo the test tubes/bottles up to 250 mL and custom racks.

Injection pumpInjection Pump

When the quantity of product to be injected becomes important and when having to use a syringe and multiply the injections for a single purification becomes constraining, the injection pump is the ideal tool. You just have to prime the pump with the product and then launch the method. It’s as easy as that!

HPLC Phases

ASTRA - CHROMSERVIS

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range
C18-HE 2, 3, 5, 10 100 330 17 2-9
C18-AQ 2. 3, 5 100 330 13 2-9
C18-BDS 3, 5 140 170 11 2-8
C8-HE 5 100 330 11 2-9
C8-BDS 3, 5 140 170 6 2-8
Phenyl-Hexyl-HE 3, 5 100 330 11 2-7.5
DM 3, 5 100 205 12 2-9
Diol 3, 5 100 330 5 2-7.5

ARION - CHROMSERVIS

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range
Plus C18 1.7, 2.2, 3, 5, 10, 15 100 420 18 1.5-10
Polar C18 2.2, 3, 5, 10, 15 120 325 16 1.5-7.0
C8 3, 5 120 325 11 2.0-7.0
Phenyl-butyl 2.2, 3, 5 100 300 12 1.5-7.5
NH2 2.2, 3, 5 120 325 5 2.0-6.5
CN 3, 5, 10 120 325 8 2.0-7.0
HILIC Plus 2.2, 3, 5 120 420 - 1.5-7.0
Si 2.2, 3, 5, 10 100 420 - 1.5-7.0
SAX 5 120 325 - 1.0-7.5
SCX 5 120 325 - 1.0-7.5

More information is available in Column care guide aswell.

CHROMSHELL - CHROMSERVIS

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range
CHROMSHELL® C18 Plus 2.6 85 130 9 1.5-7.5
CHROMSHELL® C18-XB 2.6 85 130 8 1.5-8.0
CHROMSHELL® C18 Polar 2.6 85 130 6.5 1.5-7.0

KINETEX - PHENOMENEX

Packing Material Particle Size (µm) Pore Size (Å) Effective Surface Area (m2/g) Carbon Load (%) pH Range
Kinetex XB-C18 5, 2.6 100 200 10 1.5-8.5*
Kinetex C18 5, 2.6 100 200 12 1.5-8.5*
Kinetex C8 2.6 100 200 8 1.5-8.5*
Kinetex PFP 5, 2.6 100 200 9 1.5-8.5*
Kinetex HILIC 2.6 100 200 0 2.0-7.5
Kinetex Phenyl-Hexyl 5, 2.6 100 200 11 1.5-8.5*

* Columns are pH stable from 1.5 to 10 under isocratic conditions. Columns are pH stable from 1.5 to 8.5 under gradient conditions.

Kinetex 2.6µm columns with ID 2.1mm are pressure stable up to 1000 bar, otherwise up to 600 bar.

Kinetec chore-shell colums can be replace by new ChromShell colums. Just try it.

LUNA - PHENOMENEX

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
Luna Phenyl-Hexyl 3,5,10,15 100 400 17.5 1.5-10.0 L11
Luna Silica (2) 3,5,10,15 100 400 - - L3
Luna C5 5,10 100 440 12.5 1.5-10.0 -
Luna C8 5,10 100 440 14.75 1.5-10.0 L7
Luna C8 (2) 3,5,10,15 100 400 13.5 1.5-10.0 L7
Luna C18 5,10 100 440 19 1.5-10.0 L1
Luna C18 (2) 2.5,3,5,10,15 100 400 17.5 1.5-10.0 L1
Luna CN 3,5,10 100 400 7.0 1.5-10.0 L10
Luna NH2 3,5,10 100 400 9.5 1.5-11.0 L8
Luna SCX 5,10 100 400 0.55% Sulfur Load 2.0-7.0 L9
Luna HILIC 3,5 200 200 - 1.5-8.0 -
Luna PFP(2) 3 5 100 400 5.7 1.5-8.0 L43

GEMINI - PHENOMENEX

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
Gemini C18 3,5,10 110 375 14 1.0-12.0 L1
Gemini C6-Phenyl 3,5 110 375 12 1.0-12.0 L11
Gemini NX 3,5,10 110 375 14 1.0-12.0 L1

SYNERGI - PHENOMENEX

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
Synergi Max-RP 2.5 100 400 17 1.5-10.0 -
Synergi Hydro-RP 2.5 100 400 19 1.5-7.5 L1
Synergi Polar-RP 2.5 100 440 11 1.5-7.0 L11
Synergi Fusion-RP 2.5 100 440 12 1.5-10.0 L1
Synergi Max-RP 4,10 80 475 17 1.5-10.0 -
Synergi Hydro-RP 4,10 80 475 19 1.5-7.5 L1
Synergi Polar-RP 4,10 80 475 11 1.5-7.0 L11
Synergi Fusion-RP 4,10 80 475 12 1.5-10.0 L1

ONYX - PHENOMENEX

Packing Material Macropore Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
Onyx Silica 2 130 300 0 2.0-7.5 -
Onyx C8 2 130 300 11 2.0-7.5 -
Onyx C18 2 130 300 18 2.0-7.5 -

JUPITER - PHENOMENEX

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
Jupiter C4 5,10,15 300 170 5.0 1.5-10.0 L26
Jupiter C5 5,10,15 300 170 5.5 1.5-10.0 -
Jupiter C18 5,10,15 300 170 13.3 1.5-10.0 L1
Jupiter Proteo C12 4,10 90 475 15.0 1.5-10.0 -

GraceSmart - GRACE

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
GraceSmart C18 3,5 120 220 10 2.0-9.0 L1

Alltech® Prevail - GRACE

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
Prevail C18 3,5 110 350 17 L1
Prevail C18 Select 3,5 110 350 15 L1
Prevail C8 3,5 110 350 8 L7
Prevail Phenyl 3,5 110 350 7 L11
Prevail Cyano (CN) 3,5 110 350 - L10
Prevail Amino (NH2) 3,5 110 350 - L8
Prevail Silica 3,5 110 350 - L3
Prevail Organic Acid 3,5 110 350 - -
Carbohydrate ES (polymer) 5 - - - -

Nano / Capillary LC Column ProteCol - SGE

Packing Material Particle Size (µm) Pore Size (Å) Surface Area (m2/g) Carbon Load (%) pH Range USP Packing
ProteCol C18 3 120/300 350 17 2.0-7.5 L1
ProteCol C8 3 120/300 350 10 2.0-7.5 L7
ProteCol C4 3 120/300 350 2.0-7.5 L26
ProteCol SCX 3 120/300 350 2.0-7.5 L9

HOW TO CORRECTLY CRIMP VIALS

Crimp vials are excellent sample containers for automatic dispensers of gas and liquid chromatographs and for storing samples or calibration solutions. The technique of closing them is very important for proper tightness. Due to leakage caused by improper sealing, solvent evaporation or loss of analytes may occur.
A correctly closed vial can be recognized by the fact that its cap rotates with difficulty after closing and the septum is straight.
A vial that is closed with too much force can be recognized by the fact that its cap cannot usually be turned at all and, in addition, it has a bent septum (inwards). If the septum is punctured by the needle of the microsyringe, the septum will be heavily stressed and thus the vial's tightness will be compromised.
A vial that does not have a properly closed cap due to the low power of the crimping pliers is manifested by easy rotation of the cap and, in some cases, unfastened aluminum material around the lower edge of the vial neck.
You can set the correct force of the closing pliers.
In older types of pliers, the force is adjusted by turning the Allen key inside the jaws. Pliers also have a stop screw, which is used to set the safety distance, in order not to use too much force and thus to avoid leakage or even mechanical damage to the vial.