(Aluminium oxid deactivated by Na2SO4)
The selectivity of the Rt™-Alumina PLOT column is measured by the retention indices for acetylene and propadiene. These two components are extremely sensitive for a change in selectivity.
For saturates, retention is determined mainly by the volatility of the compound, with less volatile compounds retained longer than more volatile compounds. For example, isoparaffins are less retained than less volatile normal paraffins of similar carbon number.
For unsaturates, retention is strongly influenced by polarity or degree of unsaturation. In general, hydrocarbons having a higher degree of unsaturation are more polar. This polarity comes from the presence of π electrons; the more π electrons present in a compound, the more polar it behaves and the more strongly it is retained.
Proper deactivation is critical to minimize reactivity of the aluminum oxide stationary phase and maximize column sensitivity. Quantitation can be done only if the column exhibits linear response, which results from good stationary phase inertness. Rt™-Alumina PLOT columns are specially deactivated and provide high inertness for unsaturates and saturates. In fact, Rt™-Alumina PLOT columns are almost four times more sensitive for unsaturates than other brands on the market.
Each Rt™-Alumina PLOT column is tested with a hydrocarbon test mix to ensure proper phase thickness and deactivation (see figure). Pentane is used to calculate k (capacity factor), which is a measure of phase thickness. The ratio of isobutane to acetylene retention is measured to ensure proper deactivation of the alumina oxide layer. The plates per meter value is calculated to evaluate column efficiency.
Restek’s Rt™-Alumina PLOT columns offer fast and reproducible hydrocarbon stream and purity analyses. The 0.32mm ID Rt™-Alumina PLOT column provides fast and efficient analysis of C1 to C5 hydrocarbons. The higher capacity of the 0.53mm ID Rt™-Alumina PLOT column makes it ideal for purity analysis of many common petrochemicals, such as 1,3-butadiene, ethylene, and propylene.
ID (mm) | df(µm) | Temperature limits (°C) |
---|---|---|
0.32 | 3.00 | to 200 |
0.53 | 6.00 | to 200 |