0 Porovnat
Přidejte si do porovnání produkty pomocí ikonky vah a zde si poté můžete porovnat jejich parametry.
Uživatel
0 Košík
Váš košík je prázdný...

Chromatografie

UV cutoff aditiv pro mobilní fázi

Aditivum UV cutoff (nm)
Kyselina octová, 1% 230
Octan amonný, 10 mM 205
Uhličitan amonný, 10 mM 190
Hydrogenfosforečnan amonný, 50 mM 205
CAPS 3-(cyklohexylamino)ethansulfonová kyselina, 0,1 % 215
EDTA, 1 mM 190
Kyselina chlorovodíková, 0,1 % 190
Hydrogenfosforečnan vápenatý, 10 mM 190
Hydrogenfosforečnan vápenatý, 10 mM 190
MES 2-(N-morfolino)ethansulfonová kyselina, pH 6,0, 10 mM 215
Octan sodný, 10 mM 205
Citrát sodný, 10 mM 225
Dodecylsulfát sodný, 10 mM 190
Formiát sodný, 10 mM 200
Natrium-hexansulfonová kyselina, 5 mM 225
TEA, (triethylamin), 1% 235
TFA (kyselina trifluoroctová), 0,1 % 190
Tetrabutylamonium dihydrogenfosfát, 5 mM 200
TRIS HCl (Tris(hydroxylmethyl)aminomethan), pH 7,0, 20 mM 202
TRIS HCl (Tris(hydroxylmethyl)aminomethan), pH 8,0, 20 mM 212

Dávkovací čerpadla

Dávkovací čerpadla

Dávkovací čerpadla nacházejí uplatnění v mnoha aplikacích, a to jak v laboratořích, tak i v průmyslu. Často se zde setkáváme, že je potřeba dávkovat za speciálních podmínek:

  • Dávkování za vysokého tlaku (reaktory, tlakové aparatury)
  • Dávkování při vysokých teplotách
  • Vstřikování vysoce reaktivních kapalin
  • Dávkování viskózních kapalin

Pump HeadPro všechny tyto aplikace je možné využít technologie dávkování, která se využívá v oblasti vysokoúčinné kapalinové chromatografie (HPLC). Jedná se o dvoupístová čerpadla AZURA (Knauer), která jsou vybavena safírovými písty, které zajišťují velmi přesné, plynulé a vysokotlaké dávkování. Čerpadla mohou pracovat s průtokem 0,01 až 1000 ml/min, při teplotách -10°C až +120°C a s viskózními médii do 1000 mPa.s.

Čerpadla mohou být upravena i tak, že je lze využívat například v prostředí s nebezpečím výbuchu nebo v uzavřených atmosférách.

Příkladem vysoké odolnosti čerpadel AZURA je použití při dávkování oxidu sírového při výrobě metansulfonové kyseliny (MSA), jejíž uplatnění je především v čistících prostředcích.

Materiály

Hlavy dávkovacích čerpadel se vyrábějí z různých materiálů:

  • Keramika
  • Hastelloy C-276
  • Nerezová ocel
  • Titan
  • Kombinace nerezová ocel/titan

Informace o nabízených modelech najdete zde.

Linery TOPAZ

SKY linersTrue Blue Performance

Topaz™ deaktivace:
  • Patentovaná chemická deaktivace lineru plynnou fází
  • Deaktivace vaty až v linerech
  • Dostupné v populárních designech a v modré rozlišovací barvě
  • Vysoká inertnost, nízká diskriminace aktivních analytů
  • Symetrický tvar kyselých i bazických analytů
  • Zvýšená správnost a opakovatelnost výsledku
  • Snížení detekčních limitů

Mnoho chromatografických problémů, jako např. špatná odezva, chybějící nebo chvostující píky je způsobeno aktivitou v nástřikovém lineru. Tyto nepříznivé efekty ztěžují identifikaci a kvantifikaci především u stopových analýz. Navá řada linerů TOPAZ™ firmy Restek nabízí výjimečnou inertnost, zlepšený přenos analytu na chromatografickou kolonu a vyšší symetrii píků. Vysoká inertnost linerů TOPAZ™ je zajištěna unikátním procesem deaktivace, který zajišťuje pasivaci povrchu lineru i křemenné vaty uvnitř a má za následek minimální ovlivnění reaktivních analytů.

Některé typy deaktivací, jako např. bazická, jsou účinné pouze na vybranou skupinu sloučenin. Naproti tomu vyvážená technologie deaktivace linerů TOPAZ™ brání interakcím mnoha chemických sloučenin. typickou ukázkou vysoké inertnosti je rozklad Endrinu a DDT v injektoru, kdy linery TOPAZ™ mají pouze 4,8% rozkladu Endrinu a 1,3% rozkladu DDT. Ve srovnání s jinými technologiemi deaktivace se jedná o poloviční nebo dokonce třetinovou ztrátu analytu!

Výběr linerů podle používaného přístroje najdete zde.

puriFlash RP

Více o stacionární fázích Flash kolon

Zde najdete detailní informace k jednotlivým reverzním stacionárním fázím používaných pro Flash chromatografii.

Reverzní fáze

puriFlRP-AQash® RP-AQ

60Å - 500 m2/g

15 & 30 μm

RP-alkyl, 6% uhlíku

End-capping: mixed

Stabilita pH: 2.0 až 7.5

Separace/purifikace silně nebo středně polárních molekul


C18-AQ

puriFlash® C18-AQ

100Å - 300 m2/g

5, 10, 15 & 30 μm

C18 mono-functional, 14% uhlíku

End-capping: mixed

Stabilita pH: 2.0 až 7.5

Separace/purifikace středně polárních a nepolárních molekul


C18-HP

puriFlash® C18-HP

100Å - 300 m2/g

5, 10, 15, 30 & 50 μm

C18 mono-functional, 16,5% uhlíku

End-capping: one-step

Stabilita pH: 1.5 až 7.5

Vynikající volba pro rutinní purifikace


Uptisphere® Strategy™ C18-HQ

Uptisphere® Strategy™ C18-HQ

100Å - 425 m2/g

1.7, 2.2, 3, 5, 10, 15 μm

C18 mono-functional, 19% uhlíku

End-capping: multi-step

Stabilita pH: 1.0 až 10.0

Vhodná pro mnoho farmaceutických aplikací a rutinní metody


puriFlash® C18-XS

puriFlash® C18-XS

100Å - 300 m2/g

5, 10, 3, 15 & 30 μm

C18 mono-functional, 17% uhlíku

End-capping: multi-step

Stabilita pH: 1.0 až 10.0

Vynikající fáze pro kompletní separaci bazických molekul


K dispozici je daleko širší množství stacionárních fází. kontaktujte nás pro více informací ohledně purifikací v režimu Flash chromatografie.

Reagencie pro UHPLC

Rozpouštědla pro UHPLCUHPLC přístroje vyžadují rozpouštědla a chemikálie mnohem vyšší čistoty, než rozpouštědla, která jsou v současné době na trhu. ULC/MS rozpouštědla, pufry a modifikátory (Biosolve) mají maximální čistotu, jakoutato instrumentace vyžaduje:

  • velmi nízký posun UV signálu při gradientní eluci
  • minimální obsah nečistot
  • nejnižší pozadí (obsah iontů) v MS detektorech
  • méně než 100 ppb alkalických kovů

Rozpouštědla pro ULC/MS jsou filtrována přes mikrofiltr 0,1 µm, mají odparek max. 1 ppm a jsou balena v inertní atmosféře, čímž je zajištěna jejich delší stabilita při skladování. Kromě standardního 2,5 l balení Biosolve nabízí i reagencie pro nano LC/MS:

  • 500 ml balení acetonitrilu, metanolu a isopropanolu
  • 1 l balení ultra-čisté vody
  • 100 ml TFA

Další informace o dodávaných reagenciích si vyžádejte u našich zástupců nebo kanceláří.

Čištění injektoru

INJEKTOR

  • Udává se, že příčinu 85-90% problémů při analýze lze najít v inletu. Proto nezapomínejte pravidelně vyměňovat veškerý spotřební materiál. Liner, septum i veškerá těsnění mají omezenou životnost!
  • Někdy však výměna spotřebního materiálu ani zaříznutí kolony nestačí. Pak je nutné vyčistit přívod. Obecné pokyny naleznete níže, ale vždy se řiďte pokyny především svého výrobce!

Čištění

  • Vstup zchlaďte. Teplota by neměla přesahovat 40°C.
  • Vypněte průtok nosného plynu.
  • Deinstalujte případný autosampler.
  • Deinstalujte kolonu.
  • Otevřete přívod, vyberte veškerý spotřební materiál.
  • Pokud lze, je vhodnější odpojit splitovou větev pneumatického systému od inletu.
  • Inlet nyní sestává pouze z kovové trubky, která může a nemusí být na konci zúžená.
  • Existují různé nástroje, které lze použít k čištění (např. Restek). Pomocí takového kartáče a methylenchloridu a methanolu pohyby dolů a vyčistěte přívod.
  • Pomocí pipety prostříkněte vstup rozpouštědlem (rozpouštědlo pod vstupem zachyťte do kádinky) a jednoznačně se, že ve vstupu nezůstaly žádné částice nečistoty.
  • Pro odstranění zbytků vložte nahřejte přívod na cca 65 °C.
  • Reinstalujte splitovou větev pneumatického systému, nainstalujte nový spotřební materiál.
  • Zapněte průtok nosného plynu. Zkontrolujte těsnost.
  • Před zvýšením teploty nechte přívod alespoň 10 minut proplachovat. Odstraňte zbytky kyslíku. Předčasným zvýšením teploty může dojít k aktivaci a znehodnocení nového spotřebního materiálu.

Čištění detektoru

FID

Výrazný šum, náhodné ghost píky, malá citlivost. To jsou typické znaky špinavého FID detektoru.

Nejčastější příčinou kontaminace FIDu je krvácení z kolony. Spálená stacionární fáze se může usazovat na povrchu trysky detektoru a způsobovat problémy. Na trysku se však napalují i další kontaminanty.

Je potřeba vyčistit Váš detektor?

Výše popsané problémy ovšem nemusejí být způsobeny jen kontaminací detektoru. Níže popsané kroky Vám pomohou vyloučit další potenciální příčiny.

Nosný plyn a krvácení stacionární fáze

Možný zdroj kontaminace lze najít nejen v samotném detektoru, ale i před ním. Krvácení stacionární fáze kolony, septa, kontaminovaný inlet, znečištěný nosný plyn... K vyloučení tohoto zdroje zaslepte vstup FIDu odpovídající záslepkou a zapněte FID. Pokud problémy ustanou, hledejte problém mimo detektor. Není potřeba vyměnit liner? Septum? Vyčistit inlet? V jakém stavu je kolona? Máte čistý nosný plyn? Nemáte v systému netěsnost?

Vodík a vzduch

I vodík a vzduch použité ve FIDu mohou být zdrojem kontaminace. Zpozorněte zejména pokud se problémy objevily po výměně tlakové lahve.

Také nesprávný průtok/tlak těchto dvou plynů může být zdrojem zvýšeného šumu, snížené citlivosti a problémů při zapalování FIDu. Zkontrolujte průtoky pomocí průtokoměru.

Elektrický systém

I elektrické rušení může vykazovat podobné symptomy jako špinavý FID. Může se jednat o vadu elektrometru, špatný kontakt či rušení dalšími přístroji v laboratoři.

Než začnete čistit

  • Nezapomeňte odpojit napájecí kabel!
  • Pamatujte, že detektor může být horký!
  • Při rozebírání FIDu věnujte pozornost izolačním částem. Používejte pinzetu, ať na tyto části nepřenesete nečistoty z rukou, či rukavic. Pozor na možné poškrábání.
  • Pamatujte, že někdy může být jednodušší trysku vyměnit než ji čistit. Platí to zejména v případě, že je tryska těžce kontaminována a prudce se zvyšuje riziko poškrábání trysky při čištění.

Čištění

  • Vyjměte trysku z FIDu.
  • Vložte ji do ultrazvukové lázně s vodou a detergentem a ultrazvukujte cca 5-10min.
  • Pomocí příslušného nástroje nebo vhodného tenkého drátu pročistěte trysku. Buďte pozorní. Případné poškrábání může vést ke změně tvaru plamene, zvýšení šumu či ztrátě citlivosti.
  • Trysku opět vložte do ultrazvukové lázně a ultrazvukujte dalších 5-10min. Od této chvíle už pro manipulaci s tryskou používejte pouze pinzetu.
  • Propláchněte trysku čistou vodou.
  • Propláchněte trysku malým množstvím metanolu.
  • Profoukněte trysku proudem vzduchu nebo dusíku.
  • Nechte trysku uschnout.
  • Seskládejte FID. Věnujte pozornost dotahování. Při přetažení trysky může dojít k její deformaci!
  • Po seskládání můžete připojit kolonu. Je vhodné vyhřát FID na teplotu o 10°C-40°C vyšší než je obvyklá provozní teplota detektoru. Pozor na maximální teplotní limit FIDu! Pozor na maximální operační teplotu kolony!

Jak udržet Váš detektor FIT

  • Nová kolona krvácí nejvíce. Instalujte kolonu do inletu jako obvykle, detektorový konec však nechte volně v peci a kondicionujte kolonu. Po té nainstalujte kolonu do detektoru.
  • Používejte kvalitní kolony s nízkým krvácením.
  • Vlhkost a kyslík v nosném plynu poškozují stacionární fázi kolony a způsobují její krvácení. Požívejte vysoce čisté plyny, molekulová síta, trapy... Kontrolujte těsnost plynového okruhu.
  • Používejte vhodná septa s nízkou krvácivostí a měňte je dostatečně často.

ECD

ECD je specifický a citlivý detektor. Nevhodným chováním však můžete prudce snižovat jeho životnost. Postupné zvyšování signálu je u tohoto detektoru normální. Pokud ale zvýšení nastane skokově nebo se přidá další ze symptomů-zhoršení šumu, snížení citlivosti, hledejte problém.

Čištění

  • ECD obsahuje radioaktivní materiál, proto jsou nařízené pravidelné otěrové testy. Je zakázáno ho otvírat a jakkoliv do něj zasahovat.
  • ECD lze čistit jedině termicky. Obecně čištění probíhá tak, že se ECD detektor vyhřeje na teplotu blízkou své maximální operační teplotě a nečistoty se vypálí. Před čištěním se ujistěte, že v systému nejsou netěsnosti. Navyšování teploty probíhá postupně. Sledujte signál. Zvyšujte teplotu o 10-20 °C, signál začne růst. Počkejte až se signál ustálí a začne klesat, pak můžete opět zvýšit teplotu. Po dosáhnutí požadované teploty, čekejte na pokles signálu k očekávaným hodnotám.
  • Řiďte se návodem Vašeho výrobce, postup se může lišit.
  • Pokud zahříváte detektor s instalovanou kolonou nepřekračujte maximální operační teplotu kolony, případně kolonu deinstalujte z detektoru a nahraďte záslepkou.

Neničte svůj detektor!

  • Používejte kvalitní plyny, určené pro ECD.
  • Používejte molekulová síta, trapy na dočištění plynů.
  • Při potížích- zvýšení signálu, zhoršení šumu, snížení citlivosti apod. kontrolujte těsnost systému.
  • Používejte kvalitní kolony a septa s nízkým krvácením.

Volba hrotu stříkačky

Volba hrotu stříkačky záleží na tom, pro jakou aplikaci chcete stříkačku použít. Níže uvedený obrázek vám pomůže s výběrem správného hrotu.

Výběr hrotu stříkačky

Technologie GC/MS TOF

Master TOF Proč zvolit techniku Fast GC/MS?

Požadavky laboratoří neustále narůstají a jejich zájmem jsou především:

  • rychlé analýzy (vyšší kapacita a tedy efektivita & nižší náklady na analýzu)
  • nízké detekční limity (díky požadavkům nových metod)
  • vysoká kvalita dat spojená s čím dál tím složitějšími matricemi

Multidimenzionální (komprehensivní) GC, tedy GCxGC/MS má obrovské výhody právě u komplexních vzorků, kde standardní kvadrupólové systémy selhávají jednak svou rychlostí, jednak i svým omezením v oblasti citlivosti v plném rozsahu m/z. Mnoho reálných vzorků v praci již prokázalo, že při kontrolních analýzách prostřednictvím GCxGC/MS v nich byly odhaleny další sloučeniny, které nebyli identifikovány a standardní GC/MS technika vedla k mylné interpretaci.

Master GCxGC/MS-TOFPopis GC/MS-TOF

TOF vs. kvadrupólový analyzátor